Resolvable 2-designs for regular low-density parity-check codes

نویسندگان

  • Sarah J. Johnson
  • Steven R. Weller
چکیده

This paper extends the class of low-density paritycheck (LDPC) codes that can be algebraically constructed. We present regular LDPC codes based on resolvable Steiner 2-designs which have Tanner graphs free of four-cycles. The resulting codes are -regular or -regular for any value of and for a flexible choice of code lengths.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regular low-density parity-check codes from oval designs

This paper presents a construction of low-density parity-check (LDPC) codes based on the incidence matrices of oval designs. The new LDPC codes have regular parity-check matrices and Tanner graphs free of 4-cycles. Like the finite geometry codes, the codes from oval designs have parity-check matrices with a large proportion of linearly dependent rows and can achieve significantly better minimum...

متن کامل

Regular low-density parity-check codes from combinatorial designs

Analytically constructed LDPC codes comprise only a very small subset of possible codes and as a result LDPC codes are still, for the most part, constructed randomly. This paper extends the class of LDPC codes that can be systematically generated by presenting a construction method for regular LDPC codes based on combinatorial designs known as Kirkman triple systems. We construct -codes whose T...

متن کامل

Improving the Rao-Nam secret key cryptosystem using regular EDF-QC-LDPC codes

This paper proposes an efficient joint secret key encryption-channel coding cryptosystem, based on regular Extended Difference Family Quasi-Cyclic Low-Density Parity-Check codes. The key length of the proposed cryptosystem decreases up to 85 percent using a new efficient compression algorithm. Cryptanalytic methods show that the improved cryptosystem has a significant security advantage over Ra...

متن کامل

LDPC Codes For The Classic Bursty Channel

In this paper we consider low-density parity-check (LDPC) codes for the classic bursty channel. We present lower bounds on the maximum resolvable erasure burst length, Lmax, for arbitrary LDPC codes and then present constructions for LDPC codes with good burst erasure correction performance for channels with and without the presence of noise in the guard band.

متن کامل

Construction of low-density parity-check codes from Kirkman triple systems

Gallager introduced LDPC codes in 1962, presenting a construction method to randomly allocate bits in a sparse parity-check matrix subject to constraints on the row and column weights. Since then improvements have been made to Gallager’s construction method and some analytic constructions for LDPC codes have recently been presented. However, analytically constructed LDPC codes comprise only a v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Communications

دوره 51  شماره 

صفحات  -

تاریخ انتشار 2003